

SUGGESTED SOLUTION

FYJC SUBJECT- STATISTICS

Test Code – FYJ 6017

BRANCH - () (Date :)

Head Office : Shraddha, 3rd Floor, Near Chinai College, Andheri (E), Mumbai – 69. Tel : (022) 26836666

ANSWER:1

(A) Coefficient of correlation is a ratio of covariance and standard deviations.

Since, covariance and standard deviations are independent of units of measurement.

... coefficient of correlation is also independent of units of measurement.

∴ values of coefficient of correlation obtained by first and second investigators are same.

(02)

(02)

(B) Here we take capital on X – axis and profit on Y – axis and plot the points as below,

Scale : on X – axis 1 cm = 1 Cr On Y – axis 1 cm = 1 L

(C) Given r = 0.48, Cov (X, Y) = 36

Since σ_x^2 = 16

∴ σ_x = 4

Since, $r = \frac{Cov(X,Y)}{\sigma_X \sigma_y}$

$$\therefore 0.48 = \frac{36}{4 \times \sigma_{\rm Y}}$$

$$\therefore \sigma_{\rm Y} = \frac{36}{0.48 \times 4} = \frac{9}{0.48}$$
$$= \frac{900}{42} = 18.75$$

... Standard deviation of y is 18.75

(02)

ANSWER: 2

(A) Given, n = 50, σ_x =4.8, σ_y = 3.5, $\Sigma(x_i - \bar{x}) (y_i - \bar{y})$ = 420 Cov (X, Y) = $\frac{1}{n} \sum (x_i - \bar{x})(y_i - \bar{y})$ $=\frac{1}{50} \times 420$.:. Cov (X, Y) = 8.4 $r = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{8.4}{(4.8)(3.5)} = \frac{84 \times 10}{48 \times 35} = \frac{1}{2} = 0.5$ (03) We are given that $\sum x_i$ = 140, $\sum y_i$ = 150, $\sum (x_i - 10)^2$ = 180, $\sum (y_i - 15)^2$ = 500, and (B) $\sum (x_i - 10) (y_i - 15) = 60.$ Let us define $u_i = x_i = 10$ and $v_i = y_i - 15$, then, we have, $\sum u_i = \sum (x_i - 10) = \sum x_i - \sum 10 = \sum x_i - 10n = 140 - 10 \times 10 = 40.$ $\sum v_i = \sum (y_i - 15) = \sum y_i - \sum 15 = \sum y_i - 15n = 150 - 150 = 0.$ $\sum u_i^2 = \sum (x_i - 10)^2 = 180.$ $\sum v_i^2 = \sum (y_i - 15)^2 = 500.$ $\sum u_i v_i = \sum (x_i - 10)(y_i - 15) = 60.$ $\overline{u} = \frac{\sum u_i}{n} = \frac{40}{10} = 4$. $\overline{v} = \frac{\sum v_i}{n} = \frac{0}{10} = 0$. $\sigma_{u} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} u_{i}^{2} - \overline{u}^{2}} = \sqrt{\frac{180}{10} - 4^{2}}$ $=\sqrt{18-16}=\sqrt{2}$ $\sigma_{\rm v} = \sqrt{\frac{1}{n}\sum_{i=1}^{n}v_i^2} - \bar{\rm v}^2 = \sqrt{\frac{500}{10} - 0^2}$ $=\sqrt{50-0}=\sqrt{50}$:.. cov (u, v) $\frac{1}{n} \sum u_i v_i - \bar{u} \, \bar{v} = \frac{60}{10} - (4)(0) = 6$ $r_{uv} = \frac{cov(u,v)}{\sigma_u \sigma_v} = \frac{6}{\sqrt{2}\sqrt{50}} = 0.6$ But $r_{xv} = r_{uv} = 0.6$.

3 | Page

(03)

ANSWER: 3

Here, r = 0.8, $\Sigma x_i y_i$ = 60, σ_Y = 2.5, Σx_i^2 = 90 (A) Here, x_i and y_i are the deviations from their respective means. : If X_i, Y_i are elements of x and y series respectively, then $X_i - \overline{x} = x_i$ and $Y_i - \overline{y} = y_i$ $\therefore \Sigma \mathbf{x}_i \mathbf{y}_i = \Sigma (\mathbf{X}_i - \overline{\mathbf{x}}) (\mathbf{Y}_i - \overline{\mathbf{y}}) = 60, \ \Sigma \mathbf{x}_i^2 = \Sigma (\mathbf{X}_i - \overline{\mathbf{x}})^2 = 90$ Now, $\sigma_x^2 = \frac{\sum (X_i - \bar{x})^2}{n}$ $\therefore \sigma_x^2 = \frac{90}{n}$ $\therefore \sigma_{x} = \sqrt{\frac{90}{n}}$ Also, Cov (X, Y) = $\frac{1}{n} \sum (X_i - \overline{x})(Y_i - \overline{y})$ $\therefore \text{Cov}(X, Y) = \frac{60}{n}$ $r = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$ $\therefore 0.8 = \frac{\frac{60}{n}}{\sqrt{\frac{90}{n} \times 2.5}}$ $\therefore 0.8 \times 2.5 \times \sqrt{\frac{90}{n}} = \frac{60}{n}$ $\therefore 2 \times \frac{\sqrt{90}}{\sqrt{n}} = \frac{60}{n}$ $\therefore \frac{n}{\sqrt{n}} = \frac{60}{2 \times \sqrt{90}}$ $\therefore \frac{\sqrt{n} \times \sqrt{n}}{\sqrt{n}} = \frac{30}{\sqrt{90}} = \frac{\sqrt{30} \times \sqrt{30}}{\sqrt{3}\sqrt{30}}$ $\therefore \sqrt{n} = \sqrt{10}$ ∴ n = 10

(04)

(B) (i) Let $X = x_i$, $Y = y_i$ and missing observation be 'a'.

Given, $\overline{x} = 6$, $\overline{y} = 8$, n = 5 $\overline{y} = \frac{\sum y_i}{n}$ $\therefore 8 = \frac{35+a}{5}$ $\therefore 40 = 35 + a$ $\therefore a = 5$

(ii) We construct the following table :

	Xi	y i	x_i^2	y_i^2	x _i y _i
	6	9	36	81	54
	2	11	4	121	22
	10	a = 5	100	25	50
	4	8	16	64	32
	8	7	64	49	56
Total	30	40	220	340	214

From the table, we have

 $\sum x_i = 30, \sum y_i = 40, \sum x_i^2 = 220, \sum y_i^2 = 340, \sum x_i y_i = 214$ Since, Cov (X, Y) = $\frac{1}{n} \sum x_i y_i - \overline{x} \ \overline{y}$ \therefore Cov (X, Y) = $\frac{1}{5} \times 214 - 6 \times 8$ = 42.8 - 48 = -5.2 $\sigma_x^2 = \frac{\sum x_i^2}{n} - (\overline{x})^2$ = $\frac{220}{5} - (6)^2 - 44 - 36$ $\therefore \sigma_x^2 = 8$ $\therefore \sigma_x = \sqrt{8} = 2\sqrt{2} = 2 (1.4142) = 2.83$ $\sigma_Y^2 = \frac{\sum y_i^2}{n} - (\overline{y})^2$ = $\frac{340}{5} - (8)^2 = 68 - 64$ $\therefore \sigma_Y^2 = 4$

$\therefore \sigma_{\rm Y} = \sqrt{4} = 2$

Thus, the correlation coefficient between X and Y is

$$r = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}$$
$$= \frac{-5.2}{2.83 \times 2}$$
$$= \frac{-2.6}{2.83}$$

= - 0.92

(04)